
Conclusions. A numerical method is offered for solving the system of nonlinear equa- 
tions arising from the algebraic approximation of equations of radiation and convection 
energy transport. The classic Newton-Raphson scheme is proposed as a foundation of the 
method. The use of the method of conjugate gradients with preliminary conditioning and 
symmetrization of the matrix of the linearized system results in considerable improvement 
in the computer memory and computational time as compared with the Newton-Raphson scheme 
in systems with the number of variables exceeding I00. 

An application of preconditioning on the basis of the substitution of variables (12) 
allows one to solve effectively the problems of complicated heat exchange in systems with 
pairs of "strongly interacting" zones, such as thin screens. 

NOTATION 

T, temperature vector; S, vector of external sources in the zones; R, matrix of co- 
efficients of radiation heat exchange; A, convective matrix, B, matrix of linearized sys- 
tem; a, Stefan-Boltzmann constant; ~, coefficient of thermal conductivity; h, plate thick- 
ness or thickness of the pipe wall; a, coefficient of absorption of heat carrier; W, water 
equivalent of radiating gas; T'g, temperature of heat carrier at the input of the unit. 
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SOLITARY STRESS WAVES IN ANONLINEAR THERMOELASTIC MEDIUM 

M. D. Martynenko and Nguyen Dang Bik UDC 539.3 

The propagation process of solitary stress waves in a medium with five thermo- 
elastic characteristics is investigated withinthe one-dimensional statement. 
Existence conditions and geometric characteristics of solitary waves are ob- 
tained, and restrictions are found for the elastic and thermal constants. 

i. Statement of the Problem. Propagation of one-dimensional waves in a thermoelastic 
medium in the absence of heat sources and sinks is described within five-constant nonlinear 
thermoelastic theory by the system of equations [1-3]: 

1 (1) e =  e+--~-e 2, 

= cle + c 2 e 2 - - T ,  (2) 
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Based on Eqs. (1)-(4), we consider the following problem: Find the shape of nonlinear de- 
pendences 8 = 0(o), v = v(o) for which the stress waves have the nature of solitons. With 

this purpose in mind, we supplement the system (1)-(4) by equations characterizing solitary 
waves [4, 5]. As a result we reach the following system of differential equations [6]: 

2 v @ c - - 4 k  2 =  T -1- a, 
i 

dv 
da g [2v3 @ cv~ + du v- bl ~/2 

h : - -  cg, 

de 1 '  m 

da pc z g 

dO c&O c [ b  i c~ c2 ] 
~ , o - ~  + --g : n - -  --g eda + 2 -  q- - -  e 3 - e a  , 

w h e r e  g ( o )  = 8 o / 8 x ;  h ( o )  = 8 o / 3 t ;  ~3 ,  b ,  c ,  d ,  m, n a r e  c o n s t a n t s .  

2. The Case v = const, m = n = 0. We introduce the new variable 

B 
v = 2y -- -- 
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S u b s t i t u t i n g  ( 1 0 )  i n t o  ( 5 ) ,  ( 6 ) ,  we o b t a i n :  
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where 

g 2  l 
c 2 d cd c 3 b 

12 2 24 63 4 

It is assumed that el, e2, e 3 are real roots of the equation 

@3 __ g2Y - -  g3 = O. 

Equation (12) can then be rewritten as: 

dy 
d--a- g = 2 [(Y - -  el) (Y - -  e2) (y - -  en)] I/2, 

where e i + e 2 + e 3 = 0. 

If v = 2e i - (c/6), i = i, 3, it then follows from (ii), (13) that 

(13) 
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g = - -  ~,o, % = ~,3 > O. 
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Based on (7), (14) we have 

~ = p e x p ( - - ) ~ ( x - - c t ) ) ,  0 ~ o ~ [ ~ .  for x - - c t > O ,  

where ~ is a constant of integration. 

Integrating Eq. (8) with account of (14), we obtain 

i m 
e . . . . . .  0 +  - - l n  o. 

[pc 2 

If m # 0, then e = -~ when o = 0. We therefore choose m = 0, and then 

I 

pc 2 

By (17) it follows from (i), (2), (9) that: 

1 1 
8 ---- ~ 17 @ (72, 

pc 2 292c~ 
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9c = p~c 4 ~ 

0 = 0"1(Y c%/~'~ -@ a2o 2 -Jc" an oa, 
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c~ 1 9 c~ 

3p3c 6 c~ 29c ~ 2 ~ o  . . . .  C8 
C , . C 

(14) 

(15) 

( 1 6 )  

(17) 

(18) 

( 1 9 )  

(20) 

and a I is a constant of integration. 

For T and 6 to be positive quantities for all o it is required that: 

%%0 ci >c~. 
-- C8 ~ - -  

c @ 

Since T = vS, the heat conduction coefficient v is determined as follows: 

I f  

C 2 C 1 
- - 0 - + -  - - i  
p2c~ pc ~ 

a3o z + a2o + al 

0,1 ~ - - _ _  1 (Cl 11 2, 
2c2Q 9cz 9 c2 , 

( 2 1 )  

( 2 2 )  

( 2 3 )  

then v is a monotonically decreasing function of o. Consequently, 

c213 .]_ cl 1 
O2C 4 pC 2 2C~Cr 
a#2 + a2p + al cl - -  pc2 

(24) 

Let the source, creating a solitary wave, be located at the origin of coordinates. 

It follows from (7), (14), (15) that 
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For known o0, h 0 we have by means of (21), (24) 

The quantities az, 

3. The Case e I 

ca = %oho 
CeC; 0 

$, c 2 i n  i n e q u a l i t y  (24)  a r e  d e t e r m i n e d  by Eqs.  ( 2 3 ) ,  

= e 2 -  E l i m i n a t i n g  g f rom ( 1 1 ) ,  ( 1 3 ) ,  we o b t a i n  

dg %3dy ch~ 

2 8 
, J 

For y + c/6 - k = < 0 the solution of Eq. (27) is 

( y + ~ _ c  __k2)exp(%ja). = - - R z ( ~ ,  

where R 2 is a constant of integration, and 

1 @ 

18 = "-$- ~ (g+_6_C __k2) (g__e . , ) ( y__e3)  1 

We put 
22 := ~ ] - - g 3 ,  

C 

p 2 = k  z _ _ _ %  q 2 ~ e z - - % .  
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(25), (26)~ 

(25) 
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We then have 

"Z - -  q 8q(q~--p ~) 

\ z - - p /  

8p(qZ--p ~) 
(32) 

Passing in the right hand side of Eq. (32) to the limit p + q, we obtain 

1 qz ) 
= - -  (q + z) exp ( for ~ = 8q3, lzl < q. 

R \ q2 __ z z 

Fo r  p > q i t  f o l l o w s  f r o m  (32)  t h a t  
p 

= - -  (p - -  z) for  2~3 = 4p (pZ __ qZ), lzl < q. 
R q - - z /  

(33)  

( 3 4 )  

By means of (13) we have 

Substituting (35) into (33), 

z = - - q t h q ~ ,  ~ = x - - c t .  

(34), we obtain 

(35) 

= q---(1--thq~)exp ( ' 1  sh2q~),  
R \ 2 ~ (36)  

P 

o = -~ - (pq -q thq~)  I -~- th q~ (37) 

Equations (36), (37) provide finite-amplitude solitons when $ = x - ct e 0. These solitons, 
however, cannot exist in the medium under consideration, since the condition of finite wave 
energy is violated (e = += when o = 0). We turn attention to the case 
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o = - -  ( p  - -  z) Izl > q. 
p, - q )  ' 

In that case Eq. (13) provides the solution 

z - -  q c t h  q ( ~  ~ ~). 

For o to be larger than zero, on the basis of (38), (39), 
tions 

O ~ ~ = x - -  ct % ~2, q c th  q (~  - -  ~ )  = p. 

Passing in the right hand sides of Eqs. 

(38) 

( 3 9 )  

~z and ~ must satisfy the condi- 

(38), (39) to the limit q § 0, we obtain 

0 
1 T 

~ = - -  ( p  - -  z )  e 
R 

1 1 1 

Taking (41) into account, the initial data at the source are 

c~ = - -  p - -  exp (P~I) = o'o, ] 
R , ' I 

}for X = 0 ,  t=0- 

06 _ c ( 1 p @ pZ) exp (p~O = ho ] 

(40) 

form (41) we have Besides, 

(41) 

(42) 

(43) 

g =- - -  --x- ( z2 - -  pz + pz) exp (p/z) .  ( 4 4 )  / - (  

Substituting (44) into (8) and integrating over z, we obtain 

e =  ( p - - z ) (  exp  (p/z)'i _]_ m ) 
, e----0for ~=0. (45) 

Rpc 2 pz  , 

As an example of determining the temperature consider the case m = n = 0. Then 

On the basis of (2), (9), 

e =- . cr = - - ( p  -- z) exp . 
9 c2 R9  c2 

(46) we have 

where 

T =  R1 el  - - I  ( p - - z ) e x p  , - ~  -+- RzP zc~ ( p - - z ) Z e x p  , (47) 

. . . . . . . .  ~ (48) d~ ]- ;Log %og , 9c 2 3 P u  ~ ' 

! oc2 (4 9) 

cc~ 1 
•  Pl = ," w = - -  . 

2~o z (50) 

With account of (44) we hence find that if cl/p > c 2, then 

dO 
T>0, 0>0, -~>0 V~. 

When cc~/X 0 = p, by means of (41), (44), Eq. (49) can be specified to the form: 

( 5 1 )  
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I"/p • 6R3paC 6 W 2 W 

+ 2 p 2 e •  ~ exp(2pw)dw] l  ' 
1% w (52) 

8 = 0 f o r  w = 1/p  o r  ~ = 0. 

Knowing 00, h0,  t h e  c o n s t a n t s  c ,  p,  ~1, ~2 a r e  d e t e r m i n e d  by Eqs.  ( 4 0 ) ,  ( 4 3 ) ,  and ( 5 0 ) .  
I t  f o l l o w s  f rom (47)  and (52)  t h a t  t h e  h e a t  c o n d u c t i o n  c o e f f i c i e n t  i s  v = T /0 .  

S i m i l a r  c a l c u l a t i o n s  can be p e r f o r m e d  f o r  t h e  c a s e  m # 0. 

NOTATION 

Here p, K denote second order elastic constants; D is the shift modulus, K is the bulk 
modulus; A, B, C are the Landau third order elastic constants; X0, c~ are thermal constants; 
8 is temperature; ~ is the heat conduction coefficient; e is the deformation; a is the 
stress; u is the displacement; and p is the density of the medium. 
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